On the Jacobian group of a cone over a circulant graph
Abstract
For any given graph G, consider the graph Ĝ which is a cone over G. We study two important invariants of such a cone, namely, the complexity (the number of spanning trees) and the Jacobian of the graph. We prove that complexity of graph Ĝ coincides with the number of rooted spanning forests in G and the Jacobian of Ĝ is isomorphic to the cokernel of the operator I + L(G), where L(G) is the Laplacian of G and I is the identity matrix. As a consequence, one can calculate the complexity of Ĝ as det(I + L(G)).
As an application, we establish general structural theorems for the Jacobian of Ĝ in the case when G is a circulant graph or cobordism of two circulant graphs.
References
[1] Cayley A., “A theorem on trees,” Q. J. Pure Appl. Math., 23, 376–378 (1889).
[2] Boesch F. T. and Prodinger H., “Spanning tree formulas and Chebyshev polynomials,” Graphs Comb., 2, No. 1, 191–200 (1986).
[3] Hilton A. J. W., “Spanning trees and Fibonacci and Lucas numbers,” Fibonacci Q., 12, 259–262 (1974).
[4] Sedlácěk J., “On the spanning trees of finite graphs,” ˇ Cas. Pěstování Mat., 94, 217–221 (1969).
[5] Sedlácěk J., “On the skeletons of a graph or digraph,” in: Combinatorial Structures and Their Applications (R. Guy, M. Hanani, N. Saver, J. Schonheim, eds.), pp. 387–391, Gordon and Breach, New York (1970).
[6] Shrock R. and Wu F. Y., “Spanning trees on graphs and lattices in d-dimensions,” J. Phys. A, 33, 3881–3902 (2000).
[7] Boesch F. T. and Bogdanowicz Z. R., “The number of spanning trees in a prism,” Int. J. Comput. Math., 21, 229–243 (1987).
[8] Sun W., Wang S., and Zhang J., “Counting spanning trees in prism and anti-prism graphs,” J. Appl. Anal. Comput., 6, 65–75 (2016).
[9] Kirchhoff G., “Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird,” Ann. Phys. Chem., 72, 497–508 (1847).
[10] Kel’mans A. K. and Chelnokov V. M., “A certain polynomial of a graph and graphs with an extremal number of trees,” J. Comb. Theory, Ser. B, 1, 197–214 (1974).
[11] Knill O., “Counting rooted forests in a network,” arXiv.org e-Print archive, arXiv:1307.3810, 18 Jul 2013.
[12] Jin Y. and Lin C., “Enumeration for spanning forests of complete bipartite graphs,” Ars Comb., 70, 135–138 (2004).
[13] Sung S. U., “Enumeration for spanning trees and forests of join graphs based on the combinatorial decomposition,” Electron. J. Graph Theory Appl., 4, No. 2, 171–177 (2016).
[14] Grunwald L. and Mednykh I., “The number of rooted forests in circulant graphs,” arXiv.org e-Print archive, arXiv:1907.02635 [math.CO], 2019.
[15] Calan D., “A combinatorial derivation of the number of labeled forests,” J. Integer Seq., 6, No. 4, 03.4.7, 1–3 (2003).
[16] Liu C. J. and Chow Y., “Enumeration of forests in a graph,” Proc. Amer. Math. Soc., 83, 659–662 (1981).
[17] Takács L., “On the number of distinct forests,” SIAM J. Discrete Math., 3, No. 4, 574–581 (1990).
[18] Cori R. and Rossin D., “On the sandpile group of dual graphs,” Eur. J. Comb., 21, No. 4, 447–459 (2000).
[19] Baker B. and Norine S., “Harmonic morphisms and hyperelliptic graphs,” Int. Math. Res. Notes, 15, 2914–2955 (2009).
[20] Biggs N. L., “Chip-firing and the critical group of a graph,” J. Algebr. Comb., 9, No. 1, 25–45 (1999).
[21] Bacher R., de la Harpe P., and Nagnibeda T., “The lattice of integral flows and the lattice of integral cuts on a finite graph,” Bull. Soc. Math. France, 125, 167–198 (1997).
[22] Alfaro C. A. and Valencia E., “On the sandpile group of the cone of a graph,” Linear Algebra Appl., 436, No. 5, 1154–1176 (2012).
[23] Goel G. and Perkinson D., “Critical groups of iterated cones,” Linear Algebra Appl., 567, 138–142 (2019).
[24] Lorenzini D., “Smith normal form and Laplacians,” J. Comb. Theory, Ser. B., 98, No. 6, 1271–1300 (2008).
[25] Hou Y., Woo Ch., and Chen P., “On the sandpile group of the square cycle,” Linear Algebra Appl., 418, 457–467 (2006).
[26] Chen P. and Hou Y., “On the critical group of the Möbius ladder graph,” Aust. J. Comb., 36, 133–142 (2006).
[27] Mednykh I. A. and Zindinova M. A., “On the structure of Picard group for Möebius ladder,” Sib. Elektron. Mat. Izv., 8, 54–61 (2011).
[28] Mednykh A. D. and Mednykh I. A., “On the structure of the Jacobian group for circulant graphs,” Dokl. Math., 94, No. 1, 445–449 (2016).
[29] Mednykh I. A., “On Jacobian group and complexity of I-graph I(n, k, l) through Chebyshev polynomials,” Ars Math. Contemp., 15, 467–485 (2018).
[30] Davis P. J., Circulant Matrices, AMS Chelsea Publ. (1994).
[31] Chebotarev P. and Shamis E., “Matrix forest theorems,” arXiv.org e-Print archive, arXiv: math/0602575 [math.CO], 2006.
[32] Kel’mans A. K., “The number of trees in a graph, I,” Autom. Remote Control, 26, 2118–2129 (1965).
[33] Kel’mans A. K., “The number of trees in a graph, II,” Autom. Remote Control, 27, 233–241 (1966).
[34] Mohar B., “The Laplacian spectrum of graphs,” in: Graph Theory, Combinatorics, and Applications, vol. 2 (Y. Alavi, G. Chartrand, O. R. Oellermann, and A. J. Schwenk, eds.), pp. 871–898, Wiley (1991).
[35] Abrosimov N. V., Baigonakova G. A., and Mednykh I. A., “Counting spanning trees in cobordism of two circulant graphs,” Sib. Elektron. Mat. Izv., 15, 1145–1157 (2018).
This work is licensed under a Creative Commons Attribution 4.0 International License.