Numerical method for solving boundary inverse problem for one-dimensional parabolic equation

  • Vasil’ev Vasily I., vasvasil@mail.ru M. K. Ammosov North-Eastern Federal University, Institute of Mathematics and Informatics, 42, Kulakovsky St., Yakutsk 677000, Russia
  • Su Ling-De, sulingde@gmail.com M. K. Ammosov North-Eastern Federal University, Institute of Mathematics and Informatics, 42, Kulakovsky St., Yakutsk 677000, Russia
Keywords: boundary inverse problem, finite difference method, numerical solution, parabolic partial differential equation

Abstract

We consider a numerical method for solving boundary inverse problem using the implicit difference scheme for approximation by time and finite difference method for the boundary inverse problem. A numerical solution to the boundary inverse problem is determined by special decomposition which transforms the problem into two standard problems. We present the results of numerical experiments, including those with random errors in the input data, which confirm the capabilities of the proposed computational algorithms for solving this boundary inverse problem.

References

[1]Olver P., Introduction to Partial Differential Equations, Springer, Cham, 2014  mathscinet
[2]Guenther R. B. and Lee J. W., Partial Differential Equations of Mathematical Physics and Integral Equations, Dover Publ., New York, 2012  mathscinet
[3]Tikhonov A. N. and Samarskii A. A., Equations of Mathematical Physics, Dover Publ., New York, 2011  mathscinet
[4]Evans L. C., Partial Differential Equations, Amer. Math. Soc., Washington, 2010
[5]Gilbarg D. and Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Springer, Berlin, Heidelberg, 2001  mathscinet
[6]Jiang Z. W., “A meshfree method for numerical solution of nonhomogeneous time dependent problems”, Abstract and Appl. Anal., 2014 (2014), Article ID 978310, 11 pp.  mathscinet
[7]Samarskii A. A. and Vabishchevich P. N., Numerical Methods for Solving Inverse Problems of Mathematical Physics, Walter de Gruyter, Berlin, 2007  mathscinet
[8]Jiang T. S., Li M., and Chen C. S., “The method of particular solutions for solving inverse problems for a nonhomogeneous convection diffusion equation with variable coefficients”, Numer. Heat Transfer, P. A: Applications, 61:5 (2012), 338–352  crossref  scopus
[9]Kang H., “A uniqueness theorem for an inverse boundary value problem in two dimensions”, J. Math. Anal. Appl., 270:1 (2002), 291–302  crossref  mathscinet  scopus
[10]Vabishchevich P. N. and Vasil'ev V. I., “Computational algorithms for solving the coefficient inverse problem for parabolic equations”, Inverse Probl. Sci. Engin., 24:1 (2016), 42–59  crossref  mathscinet  scopus
[11]Vabishchevich P. N., “Iterative computational identification of a spacewise dependent the source in a parabolic equations”, Inverse Probl. Sci. Engin., 25:8 (2017), 1168–1190  crossref  mathscinet  elib  scopus
[12]Vasil'ev V. V., Vasilyeva M. V., and Kardashevsky A. M., “The numerical solution of the boundary inverse problem for a parabolic equation”, Application of Mathematics in Technical and Natural Sciences, AIP Conf. Proc., 1773:1 (2016), 100010, AIP Publ.
[13]Colaço M. J., Orlande H. R. B., and Dulikravich G. S., “Inverse and optimization problems in heat transfer”, J. Braz. Soc. Mech. Sci. Engin., 28:1/1 (2006)
[14]Kamynin V. L., “On the solvability of the inverse problem for determining the right hand side of a degenerate parabolic equation with integral observation”, Math. Notes, 98:5 (2015), 765–777  mathnet  crossref  mathscinet  elib  scopus
[15]Kamynin V. L., “The inverse problem of the simultaneous determination of the right hand side and the lowest coefficient in parabolic equations with many space variables”, Math. Notes, 97:3 (2015), 349–361  mathnet  crossref  mathscinet  elib  scopus
[16]Vabishchevich P. N., Vasil'ev V. I., and Vasil'eva M. V., “Computational identification of the right hand side of a parabolic equation”, Comput. Math. Math. Phys., 55:9 (2015), 1015–1021  mathnet  crossref  mathscinet  elib  scopus
[17]Kabanikhin S. I., Inverse and Ill-Posed Problems: Theory and Applications, Walter de Gruyter, Berlin and Boston, 2011  mathscinet
[18]Jonas P. and Louis A. K., “Approximate inverse for a one-dimensional inverse heat conduction problem”, Inverse Problems, 16:1 (2000), 175-185  crossref  mathscinet  scopus
[19]Alifanov O. M., Inverse Heat Transfer Problems, Int. Ser. Heat Mass Transfer, Springer-Verl., Heidelberg, 1994  crossref
How to Cite
Vasil’ev, V. and Su, L.-D. ( ) “Numerical method for solving boundary inverse problem for one-dimensional parabolic equation”, Mathematical notes of NEFU, 24(2), pp. 107-116. doi: https://doi.org/10.25587/SVFU.2017.2.9250.
Section
Mathematical Modeling