Initial-boundary problem with conjugation conditions for composite-type equations with two breakdown coefficients

  • Grigorieva Alexandra I., Shadrina_ai@mail.ru M. K. Ammosov North-Eastern Federal University, Institute of Mathematics and Informatics, 48 Kulakovsky Street, Yakutsk 677000, Russia

Abstract

In this paper we study the solvability of an initial-boundary value problem with conjugation conditions for two nonclassical differential equations of composite type. We describe the case when the coefficients of each equation under consideration have a discontinuity of the first kind at the point zero. The field of research is given in the form of a band, due to the presence of a discontinuity point consisting of two subregions. Thus, the investigated equations are considered in two different areas. To prove the existence and uniqueness of regular solutions (which have all the generalized derivatives entering into the equations) of the initial-boundary value problem, we use the method of continuation with respect to a parameter, which has a wide application in the theory of boundary value problems. Using the maximum principle, the presence of all necessary a priori estimates for the solutions of the problem being studied is established.

References

[1]Dzhuraev T. D., Boundary Value Problems for Mixed and Mixed-Composite Type Equations, Fan, Tashkent, 1986
[2]Kozhanov A. I., Composite type equations and inverse problems, VSP, Utrecht, 1999  mathscinet  zmath
[3]Sviridyuk G. A., Fedorov V. E., Linear Sobolev type equations and degenerate semigroups of operators, VSP, Utrecht, 2003  mathscinet  zmath
[4]Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Linear and Nonlinear Equations of Sobolev Type, Fizmatlit, Moscow, 2007
[5]Korpusov M. O., Blow-up in Non-classical Nonlocal Equations, Librokom, Moscow, 2011
[6]Amirov Sh., Kozhanov A. I., “Global solvability of initial boundary-value problems for nonlinear analogs of the Boussinesq equation”, Math. Notes, 99:2 (2016), 183–191  mathnet  crossref  crossref  mathscinet  zmath  elib  elib  scopus
[7]Bitsadze A. V., Equations of Mixed Type, Izdat. Akad. Nauk SSSR, Moscow, 1959
[8]Ladyzhenskaya O. A., Stupjalis L., “On equations of mixed type”, Vestn. Leningr. Univ., 1967, no. 18, 38–46
[9]Smirnov M. M., Equations of Mixed Type, Nauka, Moscow, 1970
[10]Ladyzhenskaya O. A., Stupjalis L., “Boundary problems for mixed-type equations”, Tr. Mat. Inst. Steklova, 116 (1971), 101–136  mathnet  zmath
[11]Stupyalis L., “Boundary problems for elliptic-hyperbolic equations”, Tr. Mat. Inst. Steklova, 125 (1973), 211–229  mathnet  zmath
[12]Tersenov S. A., Introduction to the Theory of Parabolic Equations with Varying Time Direction, Inst. Mat., Novosibirsk, 1982
[13]Moiseev E. I., Equations of Mixed Type with Spectral Parameter, Izdat. Mosk. Univ., Moscow, 1988
[14]Soldatov A. P., “Problems of Dirichlet type for the Lavrent’ev–Bitsadze equation. I: Uniqueness theorems. II. Existence theorems”, Dokl. Math., 332, 333:6, 1 (1993), 696–698, 16–18  mathnet  zmath
[15]Hachev M. M., First Boundary Problem for Linear Mixed-Type Equations, Ehl'brus, Nal'chik, 1988
[16]Egorov I. E., Pyatkov S. G., Popov S. V., Nonclassical Differential-Operator Equations, Nauka, Novosibirsk, 2000  mathscinet
[17]Nakhushev A. M., Problems with Shifts for Partial Differential Equations, Nauka, Moscow, 2006
[18]Sabitov K. B., “Dirichlet problem for mixed-type equation in a rectangular domain”, Dokl. Math., 75:2 (2007), 193–196  mathnet  zmath
[19]Marichev O. I., Kilbas A. A., Repin O. A., Boundary Value Problems for Partial Differential Equations with Discontinuous Coefficients, Samarsk. Gos. Ekonom. Univ., Samara, 2008
[20]Moiseev E. I., Lihomanenko T. N., “A nonlocal boundary value problem for the Lavrent'ev–Bitsadze equation”, Dokl. Math., 86:2 (2012), 187–197  crossref  mathscinet  zmath  scopus
[21]Sabitov K. B., “Boundary value problem for a third-order equation of mixed type in a rectangular domain”, Differ. Equ., 49:2 (2013), 187–197  crossref  mathscinet  zmath  elib  scopus
[22]Kozhanov A. I., “A conjugation problem for a class of composite-type equations of variable direction”, Nonclassical Equations of Mathematical Physics, Izdat. Sobolev Inst. Mat., Novosibirsk, 2002, 96–109  zmath
[23]Kozhanov A. I., Potapova S. V., “Conjugate problem for a third order equation with multiple characteristics and a positive function at the higher order derivative”, J. Math. Sci., 215:4 (2016), 510–516, New York  crossref  mathscinet  zmath  elib  elib  scopus
[24]Kozhanov A. I., Potapova S. V., “Transmission problem for odd-order differential equations with two time variables and a varying direction of evolution”, Dokl. Math., 95:3 (2017), 267–269  crossref  crossref  mathscinet  zmath  elib  scopus
[25]Il'in V. A., Luferenko P. V., “Mixed problems describing longitudinal oscillations of a rod consisting of two segments with different densities and different elasticities but equal impedances”, Dokl. Math., 80:2 (2009), 642–645  mathnet  crossref  mathscinet  zmath  scopus
[26]Il'in V. A., Luferenko P. V., “Generalized solutions of initial-boundary value problems for a discontinuous wave equation in the case of equal impedances”, Dokl. Math., 80:3 (2009), 901–905  mathnet  crossref  mathscinet  zmath  scopus
[27]Olejnik O. A., “Boundary problems for linear elliptic and parabolic types with discontinuous coefficients”, Izv. Akad. Nauk SSSR, Ser. Mat., 25 (1961), 3–20  mathnet  zmath
[28]Il'in V. A., “On the solvability of the Dirichlet and Neumann problems for a linear elliptic operator with discontinuous coefficients”, Sov. Math., Dokl., 2 (1961), 228–231  mathnet  zmath
[29]Il'in V. A., “The Fourier method for a hyperbolic equation with discontinuous coefficients”, Sov. Math., Dokl., 3 (1962), 12–16  mathnet  zmath
[30]Ladyzhenskaya O. A., Solonnikov V. A., Ural'ceva N. N., Linear and Quasilinear Parabolic Equations, Nauka, Moscow, 1967  mathscinet
[31]Rogozhnikov A. M., “Study of a mixed problem describing the oscillations of a rod consisting of several segments with arbitrary lengths”, Dokl. Math., 85:3 (2012), 399–402  crossref  mathscinet  zmath  elib  scopus
[32]Kuleshov A. A., “Mixed problems for the equation of longitudinal vibrations of a heterogeneous rod with a free or fixed right end consisting of two segments with different densities and elasticities”, Dokl. Math., 85:1 (2012), 80–82  crossref  mathscinet  zmath  elib  scopus
[33]Smirnov I. N., “On the vibrations described by the telegraph equation in the case of a system consisting of several parts of different densities and elasticities”, Differ. Equ., 49:5 (2013), 617–622  crossref  mathscinet  zmath  elib  scopus
[34]Shubin V. V., “Boundary value problems for third-order equations with a discontinuous coefficient”, J. Math. Sci., 198:5 (2014), 637–647, New York  mathnet  crossref  mathscinet  zmath  elib  scopus
[35]Potapova S. V., “Boundary value problems for pseudoparabolic equations with a variable time direction. TWMS”, J. Inequal. Pure Appl. Math., 3:1 (2012), 73  mathscinet
[36]Kozhanov A. I., Potapova S. V., “The Dirichlet problem for a class of composite type equations with a discontinuous coefficient of the highest derivative”, Dal'nevost. Mat. Zh., 14:1 (2014), 48–65  mathnet  mathscinet  zmath  elib
[37]Kozhanov A. I., Sharin E. F., “A conjugate problem for some higher order nonclassical equations, II”, Mat. zametki SVFU, 21:1 (2014), 16–25  zmath  elib
[38]Trenogin V. A., Functional Analysis, Fizmatlit, Moscow, 2007
How to Cite
Grigorieva, A. ( ) “Initial-boundary problem with conjugation conditions for composite-type equations with two breakdown coefficients”, Mathematical notes of NEFU, 25(2), pp. 12-26. doi: https://doi.org/10.25587/SVFU.2018.98.14227.
Section
Mathematics