Euler type differential equations of fractional order
Abstract
Using the direct and inverse Mellin transforms, we find a solution to the nonhomogeneous Euler-type differential equation with Riemann–Liouville fractional derivatives on the half-axis in the class of functions represented by the fractional integral in terms of the fractional analogue of the Green’s function. Fractional analogues of the Green’s function are constructed in the case when all roots of the characteristic polynomial are different and in the case when there are multiple roots of the characteristic polynomial. Theorems of solvability of the nonhomogeneous fractional differential equations of Euler type on the half-axis are stated and proved. Special cases and examples are considered.
References
[1] Bateman H. and Erdelyi A., Higher Transcendental Functions, V. 1, McGraw–Hill, New York (1953).
[2] Debnath L. and Bhatta D., Integral Transforms and Their Applications, Chapman & Hall/ CRC (2007).
[3] Ditkin V. A. and Prudnikov A. P., Integral Transforms and Operational Calculus [in Russian], Nauka, Moscow (1974).
[4] Dzhrbashyan M. M., Integral Transforms and Representations of Functions in Complex Region, Nauka, Moscow (1996).
[5] Erdelyi A., Magnus W., Oberhettinger F., and Tricomi F. G., Higher Transcendental Functions, I, McGraw–Hill, New York (1953); Reprinted: Krieger, Melbourne, FL (1981).
[6] Gorenflo R., Kilbas A. A., Mainardi F., and Rogosin S. V., Mittag–Leffler Functions: Related Topics and Applications, Springer (2014).
[7] Kilbas A. A., Srivastava H. M., and Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam (2006) (Math. Stud.; V. 204).
[8] Knyazev P. N., Integral Transforms, Vysheishaya Shkola, Minsk (1969).
[9] Olver F. W. J., Lozier D. W., Boisvert R. F., and Clark C. W., eds., NIST Handbook of Mathematical Functions, Camb. Univ. Press, Cambridge (2010).
[10] Podlubny I., Fractional Differential Equations, Academic Press, San Diego (1999).
[11] Samko S. G., Kilbas A. A., and Marichev O. I., Fractional integrals and derivatives: theory and applications, Nauka i Tekhnika, Minsk (1987).
[12] Samko S. G., Kilbas A. A., and Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Sci. Publ., New York (1993).
[13] Marichev O. I., Method for Calculating Integrals of Special Functions, Nauka i Tekhnika, Minsk (1978).
[14] Miller K. S. and Ross B., “Fractional Green’s functions,” Indian J. Pure Appl. Math., 22, No. 9, 763–767 (1991).
[15] Sitnik S. M., “Factorization and estimates of the norms of Buschman–Erd´elyi operators in weighted Lebesgue spaces,” Sov. Math., Dokl., 44, No. 2, 641–646 (1992).
[16] Sitnik S. M., Transmutations and applications: a survey, arXiv:1012.3741, 141 p. (2010).
[17] Sitnik S. M., A short survey of recent results on Buschman–Erdelyi transmutations,” J. In equal. Spec. Funct., 8, No. 1, 140–157 (2017).
[18] Sitnik S. M., “Buschman–Erdelyi transmutations, classification and applications,” in: Analytic Methods Of Analysis and Differential Equations: Amade 2012 (M. V. Dubatovskaya, S. V. Rogosin, eds.), Camb. Sci. Publ., Cambridge, 2013, pp. 171–201.
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.