Calculating the parameters for an underground polyethylene heat supply pipeline in perennial frozen soils
Keywords:
heat equation, pipeline, heat supply, permafrost, temperature, finite difference method, thawing depth, thermal insulation thickness
Abstract
Based on mathematical modeling of the process of thawing-freezing of the host soil for an underground polyethylene heat supply pipeline with thermal insulation operated in areas of permafrost distribution, we propose a method for calculating the thickness of the thermal insulation layer and depth of the pipeline under the condition of annual zero isotherm establishment in the host soil by the beginning of the heating season at the level of the active soil layer border.
References
[1] SNiP 41–03–2003, Thermal Insulation of Equipment and Pipelines [in Russian], Moscow (2004).
[2] Polovnikov V. Y. and Khuzeev V. A., “Numerical analisys of soil freezing impact on heat losses of pipelines [in Russian],” Inzh.-Stroit. Zhurn., No. 2, 16–24 (2013).
[3] Razmazin G. A. and Moiseev B. V., “Thermal interaction channelless pipeline with permafrost soils [in Russian],” in: Problems of Construction, Engineering and Urban Ecology, Proc. I Int. Conf., pp. 106–110, PDZ, Penza (2000).
[4] Polovnikov V. Yu., “Numerical analysis of nonstationary heat transfer influence in the zones of underground thermal pipelines on their thermal regimes and heat losses [in Russian],” Vestn. Tomsk. Politekhn. Univ., Geo Аssets Engineering, 329, No. 10, 76–84 (2018).
[5] Pekhovich A. I. and Zhidkikh V. M., Solid Thermal Regime Calculation [in Russian], Energiya, Leningrad (1976).
[6] Isachenko V. P., Osipova V. A., and Sukomel A. S., Heat Transfer [in Russian], Energiya, Moscow (1975).
[7] Samarsky A. A. and Moiseenko B. D., “An efficient shock-capturing schemes for multidimensional the Stefan problem,” J. Comput. Math. Math. Phys., 5, No. 5, 816–827 (1965).
[8] Sleptsov V. I.,Mordovskoy S. D., and Izakson V. Y.,Mathematical Modeling of Heat Exchange Processes in Permafrost [in Russian], Nauka, Novosibirsk (1996).
[9] Vabishchevich P. N., Varlamov S. P., Vasilieva M. V., Vasiliev V. I., and Stepanov S. P., “Numerical analysis of temperature dynamics of railway embankment in permafrost [in Russian],” Mat. Modelir., 28, No. 10, 110–124 (2016).
[10] Vasiliev V. I., Maksimov A. M., Petrov E. E., and Tsypkin G. G., Heat and Mass Transfer in Freezing and Thawing Soils [in Russian], Nauka; Fizmatlit, Moscow (1997).
[11] Akimov M. P., Mordovskoy S. D., and Starostin N. P., “Numerical algorithm for studying heat supply pipeline impact on permafrost [in Russian],” Mat. Zametki YaGU, 17, No. 2, 125–131 (2010).
[12] Akimov M. P., Zakharov P. E., and Matveeva O. I., “The numerical simulation of temperature field permafrost soil under the influence of pipelines [in Russian],” Mat. Zametki SVFU, 21, No. 4, 61–70 (2014).
[13] Gavriliev R. I., Thermophysical Properties of Rocks and Ground Cover in Permafrost Zone [in Russian], Izdat. SO RAN, Novosibirsk (1998).
[14] Babichev A. P., Babushkina N. A., Bratkovsky A. M., eds., Physical Quantities: Reference Book [in Russian]„ Energoatomizdat, Moscow (1991).
[15] Kutateladze S. S., Fundamentals of Heat Exchange Theory [in Russian], 5th ed., Atomizdat, Moscow (1979).
[16] SNIP 41–02–2003, Heat Networks [in Russian], Moscow (2004).
[17] Moiseev N. N., Ivanilov Yu. P., and Stolyarova E. M., Optimization Methods [in Russian], Nauka, Moscow (1978).
Received
06-05-2020
How to Cite
Akimov, M., Mordovskoy, S. and Starostin, N. (2021) “Calculating the parameters for an underground polyethylene heat supply pipeline in perennial frozen soils”, Mathematical notes of NEFU, 28(1), pp. 67-77. doi: https://doi.org/10.25587/SVFU.2021.24.60.006.
Issue
Section
Mathematical Modeling
This work is licensed under a Creative Commons Attribution 4.0 International License.