3D simulation of the thermal regime of a group of gas wells in the Srednetyungskoe field

  • Ivanov Victor A., victor.ivanov88@gmail.com Institute of Oil and Gas Problems SB RAS, 1, Oktyabrskaya Street, Yakutsk 677000, Russia
  • Sivtsev Petr V., sivkapetr@mail.ru Ammosov North-Eastern Federal University, 42 Kulakovsky Street, Yakutsk 677000, Russia
  • Rozhin Igor I., i_rozhin@mail.ru Institute of Oil and Gas Problems SB RAS, Oktyabrskaya str., 1, Yakutsk 677000, Russia
Keywords: permafrost, gas well, Stefan problem, numerical simulation, Srednetyungskoe field, zonal isolation

Abstract

The thermal interaction between a group of gas wells and the permafrost ground was simulated using the finite element method for the conditions of the Srednetyungskoe field. For the spacings between the wellheads of 10 m, 15 m, and 20 m, thermal regimes for the gas and surrounding ground massif are forecasted for 30 years of operation. The feature of the present work is that atmospheric conditions and the effect of the wells are modeled simultaneously in 3D, allowing for accurate characterization of the wellhead area. Field data on the ground temperature, the bottomhole pressure and temperature, the production rate, the gas composition, thermophysical properties of the ground, and weather conditions are used as input parameters. Temperature profiles of the ground, the position of the thawing front, and timing of merger of the thawing halos around the wells are estimated. The results of the survey can be used in development planning of the field.

References


[1]
Permyakov P. P., “Vliyanie kriolitozony v osnovanii podvodnogo perehoda gazoprovoda cherez r. Lenu [in Russian],” Gaz. Promyshl., No. 2, 59–61 (2013).

[2]
Sheveleva D. V., Dinamika Slozhnogo Teplovogo Vzaimodeystviya Neftyanyh i Gazovyh Skvazhin s Mnogoletnemyorzlymi Porodami [in Russian], Diss. . . . Kand. Fiz.-Mat. Nauk, Tyumen (2008).

[3]
Argunova K. K., Bondarev E. A., and Rozhin I. I., “Teplovoe vzaimodeystvie neftedobyvayushchikh skvazhin s mnogoletnemerzlymi gornymi porodami [in Russian],” Nauka i Obraz., No. 4, 78–83 (2008).

[4]
Polozkov K. A., “Vybor rasstoyaniy mezhdu kustovymi dobyvayushhimi skvazhinami v zonakh MMP [in Russian],” Stroitel’stvo Neftyanyh i Gazovykh Skvazhin na Sushe i na More, No. 3, 21–29 (2008).

[5]
PAO Gazprom, VRD 39-1.9-015-2000, Rukovodstvo po Termometricheskim Metodam Kontrolya Kachestva Stroitel’stva, Krepleniya Skvazhin v Mnogoletnemerzlykh i Nizkotemperaturnykh Porodakh [in Russian], OOO VNIIGAZ, Moscow (2001).

[6]
Bondarev E. A., Rozhin I. I., and Argunova K. K., “Modeling the formation of hydrates in gas wells in their thermal interaction with rocks,” J. Eng. Phys. Thermophys., 87, No. 4, 900–907 (2014).

[7]
Bykov I. Yu., Pushkin V. N., and Pushkin V. V., “Dynamics of axis-symmetric frosting of wellhead area in conditions of ventilated shaft directions with account of cement ring influence [in Russian],” Stroitel’stvo Neftyanyh i Gazovyh Skvazhin na Sushe i na More, No. 3, 15–19 (2011).

[8]
Gorelik J. B., Shabarov A. B., and Sysoyev Yu. S., “The dynamics of frozen ground melting in the influence zone of two wells [in Russian],” Kriosfera Zemli, 12, No. 1, 59–65 (2008).

[9]
Afanaseva N. M. and Kolesov A. E., “Numerical solution of the thermal influence of oil well cluster on permafrost,” in: AIP Conf. Proc., 1773, No. 1, 110001 (2016).

[10]
Vasilyeva M. V., Zakharov P. E., Sivtsev P. V., and Spiridonov D. A., “Numerical modeling of thermoelasticity problems for constructions with inner heat source [in Russian],” Mat. Zamet. SVFU, 24, No. 3, 52–64 (2017).

[11]
Vasilyeva M. V. and Prokopiev G. A., “Numerical solution to the problem of two-phase filtration with heterogeneous coefficients by the finite element method [in Russian],” Mat. Zamet. SVFU, 24, No. 2, 46–62 (2017).

[12]
Grigoriev V. V. and Zakharov P. E., “Numerical modeling of the two-dimensional Rayleigh–Benard convection [in Russian],” Mat. Zamet. SVFU, 24, No. 1, 87–98 (2017).

[13]
Bondarev E. A., Vasil’ev V. I., Voevodin A. F., Pavlov N. N., and Shadrina A. P., Termogidrodinamika Sistem Dobychi i Transporta Gaza [in Russian], Nauka, Novosibirsk (1988).

[14]
Latonov V. V. and Gurevich G. R., “Raschet koeffitsienta szhimaemosti prirodnykh gazov [in Russian],” Gaz. Promyshl., No. 2, 7–9 (1969).

[15]
Samarskii A. A. and Moiseenko B. D., “An economic continuous calculation scheme for the Stefan multidimensional problem,” U. S. S. R. Comput. Math. Math. Phys., 5, No. 5, 43–58 (1965).

[16]
Semyonov V. P., Geotemperaturnoe Pole i Kriolitozona Vilyuyskoy Sineklizy [in Russian], Diss. . . . Kand. Geol.-Min. Nauk, FGBUN Inst. Merzlotovedeniya im. P. I. Mel’nikova SO RAN, Yakutsk (2018).

[17]
Gavrilova M. K., Klimat Tsentral’noy Yakutii [in Russian], Yakut. Knizh. Izdat., Yakutsk (1973).
How to Cite
Ivanov, V., Sivtsev, P. and Rozhin, I. (2019) “3D simulation of the thermal regime of a group of gas wells in the Srednetyungskoe field”, Mathematical notes of NEFU, 26(3), pp. 109-119. doi: https://doi.org/10.25587/SVFU.2019.26.34.009.
Section
Mathematical Modeling