Simulation of filtration problems in fractured porous media with mixed finite element method (Embedded Fracture Model)

  • Spiridonov Denis A., d.stalnov@mail.ru M. K. Ammosov North-Eastern Federal University Institute of mathematics and Informatics 42 Kulakovsky Street, Yakutsk 677891, Russia
  • Vasilyeva Maria V., vasilyevadotmdotv@gmail.com M. K. Ammosov North-Eastern Federal University Institute of mathematics and Informatics 42 Kulakovsky Street, Yakutsk 677891, Russia
Keywords: finite element method, built-in model of cracks, fractured medium, single-phase liquid, liquid flow, law of conservation of mass, Darcy law

Abstract

We present a mathematical model of mixed dimension for modeling filtration problems in fractured porous media (built-in model of cracks). The mathematical model is described by a system of parabolic equations: d-dimensional for a porous medium and (d − 1)-dimensional for a system of cracks. The system of equations is connected by specifying a special flow function. This model allows the use of grids for a matrix of a porous medium not dependent on the grid for cracks. For the numerical solution, an approximation using the mixed finite element method is constructed. The results of the numerical solution of the model problem that show the operability of the proposed method for modeling the flow in fractured porous media are presented.

References

[1]Barenblatt G. I., Zheltov I. P., Kochina I. N., “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]”, J. Appl. Math. Mech., 24:5 (1960), 1286–1303  crossref  zmath  scopus
[2]Arbogast T., Douglas, Jr. J., Hornung U., “Derivation of the double porosity model of single phase flow via homogenization theory”, SIAM J. Math. Anal., 21:4 (1990), 823–836  crossref  mathscinet  zmath
[3]Vasilyeva M. V., Vasil’ev V. I., and Timofeeva T. S., “Numerical solution by the finite element method of diffusion and convective transport problems in strongly heterogeneous porous media”, Uch. Zap. Kazansk. Univ., Ser. Fiz. Mat. Nauki, 158:2 (2016), 243–261  mathnet  mathscinet
[4]Akkutlu I. Y., Efendiev Y., Vasilyeva M., Wang Y., “Multiscale model reduction for shale gas transport in poroelastic fractured media”, J. Comput. Phys., 353 (2018), 356–376  crossref  mathscinet  zmath  elib  scopus
[5]Vabishchevich P., Vasil'eva M., “Iterative solution of the pressure problem for the multiphase filtration”, Math. Model. Anal., 17:4 (2012), 532–548  crossref  mathscinet  zmath  elib  scopus
[6]Warren J. E., Root P. J., “The behavior of naturally fractured reservoirs”, Soc. Petrol. Eng. J., 3:3 (1963), 245–255  crossref
[7]Li L., Lee S. H., “Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media”, SPE Reservoir Eval. Eng., 11:4 (2008), 750–758  crossref
[8]Kazemi H., Merrill Jr L. S., Porterfield K. L., Zeman P. R., “Numerical simulation of water-oil flow in naturally fractured reservoirs”, Soc. Petrol. Eng. J., 16:6 (1976), 317–326  crossref
[9]Tene M., Al Kobaisi M. S., Hajibeygi H., “Algebraic multiscale solver for flow in heterogeneous fractured porous media”, Pap. SPE Reservoir Simulation Symp., Houston, TX, Feb. 23-25, 2015, Soc. Petroleum Eng., 2015  mathscinet
[10]Li Q., Wang Y., Vasilyeva M., “Multiscale model reduction for fluid infiltration simulation through dual-continuum porous media with localized uncertainties”, J. Comput. Appl. Math. (to appear), 2018  mathscinet
[11]Akkutlu I. Y., Efendiev Y., Vasilyeva M., Wang Y., “Multiscale model reduction for shale gas transport in a coupled discrete fracture and dual-continuum porous media”, J. Natural Gas Sci. Eng., 48 (2017), 65–76  crossref  elib  scopus
[12]Chung E. T., Efendiev Y., Leung W.T., Wang Y., Vasilyeva V., “Non-local multi-continua upscaling for flows in heterogeneous fractured media”, 2017, arXiv: 1708.08379
[13]Chung E. T., Efendiev Y., Leung W. T., Vasilyeva M., “Coupling of multiscale and multicontinuum approaches”, Int. J. Geomath., 8:1 (2017), 9–41  crossref  mathscinet  zmath  scopus
[14]Vasil’ev V. I., Vasilyeva M. V., and Nikiforov D. Ya., “Solution of single-phase filtration problems by the finite element method on a computational cluster”, Vestn. SVFU, 2016, no. 6, 31–40
[15]Karimi-Fard M., Durlofsky L. J., Aziz K., “An efficient discrete fracture model applicable for general purpose reservoir simulators”, Soc. Petrol. Eng. J., 9:2 (2004), 227–236
[16]Vasilyeva M. V. and Prokopiev G. A., “Numerical solution of the two-phase filtration problem with inhomogeneous coefficients by the finite element method”, Mat. Zamet. SVFU, 24:2 (2017), 46–62  elib
[17]Vasilyeva M. V., Vasil'ev V. I., Krasnikov A. A., and Nikiforov D. Ya., “Numerical simulation of the flow of single-phase fluid in fractured porous media”, Uch. Zap. Kazansk. Univ., Ser. Fiz. Mat. Nauki, 159:1 (2017), 100–115  mathnet  mathscinet
[18]Vasil'ev V. I., Vasilyeva M. V., Laevskii Y. M., and Timofeeva T. S., “Numerical simulation of the filtration of a two-phase fluid in heterogeneous media”, Sib. J. Ind. Math., 20:2 (2017), 33–40  mathnet  mathscinet  zmath  elib
How to Cite
Spiridonov, D. and Vasilyeva, M. ( ) “Simulation of filtration problems in fractured porous media with mixed finite element method (Embedded Fracture Model)”, Mathematical notes of NEFU, 24(3), pp. 100-110. doi: https://doi.org/10.25587/SVFU.2018.3.10893.
Section
Mathematical Modeling