On dimension of the space of Killing fields on k–symmetric lorentzian manifolds

  • Oskorbin Dmitrii N., oskorbin@yandex.ru Altai State University, 61 Lenin Street, Barnaul 656049, Russia
  • Rodionov Eugene D., edr2002@mail.ru Altai State University, 61 Lenin Street, Barnaul 656049, Russia
  • Ernst Igor V., igeh@ya.ru Altai State University, 61 Lenin Street, Barnaul 656049, Russia
Keywords: Killing vector fields, generalized Cahen-Wallach spaces, k-symmetric manifolds, Lorentzian geometry

Abstract

We study the Killing equation on k-symmetric Lorentzian manifolds. Solutions of this equation form a Lie algebra called the algebra of Killing fields. Our consideration is focused primarily on the dimension of the Lie algebra of Killing fields. The Lorentzian manifolds we consider in this article are the generalized Cahen–Wallach spaces, which are convinient to use because of the coordinate system they have. Using these coordinates, we describe the general solution of the Killing equation on locally indecomposable 2-symmetric Lorentzian manifolds, which are generalized Cahen-Wallach spaces, as was proved by A. S. Galaev and D. V. Alekseevsky. Finally, we give an explicit description of all possible dimensions of the algebra of Killing fields on 2-symmetric Lorentzian manifolds of small dimensions.

References


[1]
Cahen M., Wallach N. Lorentzian symmetric spaces // Bull. Amer. Math. Soc. 1970. V. 76. P. 585–591.

[2]
Galaev A. S., Alexeevskii D. V. Two-symmetric Lorentzian manifolds // J. Geom. Phys. 2011. V. 61, N 12. P. 2331–2340.

[3]
Blanco O. F., Sanchez M., Senovilla J. M. Structure of second-order symmetric Lorentzian manifolds // J. Eur. Math. Soc. 2013. V. 15. P. 595–634.

[4]
Galaev A. S., Leistner T. Holonomy groups of Lorentzian manifolds: classification, examples, and applications // Recent developments in pseudo-Riemannian geometry. Zurich: Eur. Math. Soc., 2008. P. 53–96 (ESI Lect. Math. Phys.).

[5]
Walke A. G. On parallel fields of partially null vector spaces // Quart. J. Math., Oxf. Ser. 1949. V. 20. P 135–145.

[6]
Brozos-Vazquez M., Garcia-Rio E., Gilkey P., Nikcevic S., Vazquez-Lorenzo R. The geometry of Walker manifolds. Morgan & Claypool Publ., 2009 (Synth. Lect. Math. Stat.; Book 5).

[7]
Wu H. On the de Rham decomposition theorem // Ill. J. Math. 1964. V. 8, No. 2. P. 291–311.

[8]
Blau M, O’Loughlin M. Homogeneous plane waves // Nucl. Phys. 2003. V. 654. P. 135–176.

[9]
Oskorbin D., Rodionov E., Ernst I. Ricci solitons and killing field on k-symmetric Lorentzian spaces // Classical and modern geometry: Mat. Int. Conf. dedicated to V. T. Bazylev’s 100th Anniv. Moscow: MPSU, 2019. P. 31–32.

[10]
Oskorbin D., Rodionov E., Ernst I. Killing fields on 2-symmetric Lorentzian manifolds // Izv. Altaisk. Gos. Univ. 2019. V. 1. P. 95–98.
How to Cite
Oskorbin, D., Rodionov, E. and Ernst, I. (2019) “On dimension of the space of Killing fields on k–symmetric lorentzian manifolds”, Mathematical notes of NEFU, 26(3), pp. 47-56. doi: https://doi.org/10.25587/SVFU.2019.19.57.004.
Section
Mathematics