Numerical simulation of Li-ion battery thermo-electrochemical processes

  • Zakharov Petr E., M. K. Ammosov North-Eastern Federal University, Mathematical and Computer Analysis Methods Scientific Laboratory, 42 Kulakovsky Street, Yakutsk 677891, Russia
  • Nikiforova Marina A., M. K. Ammosov North-Eastern Federal University, Mathematical and Computer Analysis Methods Scientific Laboratory, 42 Kulakovsky Street, Yakutsk 677891, Russia
Keywords: Li-ion battery, thermo-electrochemical process, Butler-Volmer equation, finite element method


We present a numerical simulation of thermo-electrochemical processes of a Li-ion battery. Mathematical model of thermo-electrochemical processes is described on a microscopic scale and contains nonlinear equations for concentration, potential and temperature. A Li-ion battery consists of three subdomains: two electrodes and the electrolyte. On the interface of electrodes and electrolyte there are Lithium ions intercalation and deintercalation processes which are described by the Butler–Volmer nonlinear equation. The main problem of numerical implementation is the discontinuity of concentration and potential at the interface of the subdomains. To take into account the discontinuity, we use mixed finite elements in spatial approximation of a coupled system: discontinuous Galerkin elements for concentration and potential and continuous Galerkin elements for temperature. The time approximation is performed using a fully implicit scheme. The nonlinear system of equations obtained by approximation is solved by the Newton method.


Alnaes S., Blechta J., Hake J., Johansson A., Kehlet B., Logg A., Richardson C., Ring J., Rognes M. E., and Wells G. N., “The FEniCS project Version 1.5,” Arch. Numer. Softw., 3, No. 100 (2015).

Ayachit U., The ParaView Guide: A Parallel Visualization Application, Kitware, Inc., 2015.

Broussely M., Biensan P., Bonhomme F., Blanchard P., Herreyre S., Nechev K., and Staniewicz R., “Main aging mechanisms in Li-ion batteries,” J. Power Sources, 146, 90–96 (2005).

Cockburn B. and Shu C.-W., “TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework,” Math. Comput., 52, No. 186, 411–435 (1989).

Di Pietro D. A. and Ern A., Mathematical Aspects of Discontinuous Galerkin Methods, Springer, Berlin, Heidelberg (2012).

Gu W. B. and Wang C. Y., “Thermal-electrochemical modeling of battery systems,” J. Electrochem. Soc., 147, No. 8, 2910–2922 (2000).

Gu W. B. and Wang C. Y., “Thermal-electrochemical coupled modeling of a lithium-ion cell,” Proc. Electrochem. Soc., 99, 748–762 (2000).

Iliev O. and Zakharov P. E., “Domain splitting algorithms for the Li-ion battery simulation,” IOP Conf. Ser.: Mat. Sci. Eng., 158, No. 1 (2016).

Lee J., “Battery thermal modeling. The methodology and applications,” Electrochem. Soc. Proc. Ser., 2016 (1986).

Less G. B., “Micro-scale modeling of Li-ion batteries: parameterization and validation,” J. Electrochem. Soc., 159, No. 6, A697–A704 (2012)

Newman J. and Tiedemann W., “Temperature rise in a battery module with constant heat generation,” J. Electrochem. Soc., 142, 1054 (1995).

Olgaard K. B., Logg A., and Wells G. N., “Automated code generation for discontinuous Galerkin methods,” SIAM J. Sci. Comput., 31, 849–864 (2008).

Rivi`ere B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Camb. Univ. Press (2008).

Thomas K. E., Newman J., and Darling R. M., Mathematical Modeling of Lithium Batteries, Kluwer Acad. Publ., Dordrecht (2002).

Werner D., Loges A., Becker D. J., and Wetzel T., “Thermal conductivity of Li-ion batteries and their electrode configurations. A novel combination of modelling and experimental approach,” J. Power Sources, 364, 72–83 (2017).

Zhang X., Sastry A. M., and Shyy W., “Intercalation-induced stress and heat generation within single Lithium-ion battery cathode particles,” J. Electrochem. Soc., 155, No. 7, A542–A552 (2008).
How to Cite
Zakharov, P. and Nikiforova, M. ( ) “Numerical simulation of Li-ion battery thermo-electrochemical processes”, Mathematical notes of NEFU, 25(4), pp. 102-114. doi:
Mathematical Modeling