Non-random functions and solutions of Langevin-type stochastic differential equations

  • Karachanskaya Elena V., elena_chal@mail.ru Far Eastern State Transport University, 47 Seryshev Street, Khabarovsk 680000, Russia
  • Petrova Alena P., alyona.petrova393@gmail.com M. K. Ammosov North-Eastern Federal University, Institute of Mathematics and Informatics, 42, Kulakovsky St., Yakutsk 677000, Russia
Keywords: Langevine-type equation, Brownian motion, stochastic differential equation, Ito’s formula, deterministic modulus in square for velocity, analytical solution

Abstract

We construct a solution of a Langevine-type stochastic differential equation (SDE) with a non-random function depending on its solution. We determine conditions for such non-random function to appear. Using the solution of a homogeneous SDE, we obtain a solution of the generalized Langevine-type SDE by reducing it to a linear one. We construct a stochastic process with non-random modulus in square which is not a solution to an Ito-type SDE.

References

[1]Gihman I. I. and Skorohod A. V., Stochastic differential equations, Springer-Verl., Berlin; New York, 1972  mathscinet  mathscinet  zmath
[2]Dubko V. A., The first integral of a stochastic differential equations system, Preprint, Inst. Mat. Akad. Nauk Ukr. SSR, Kiev, 1978  mathscinet
[3]Dubko V. A., Questions of theory and appplication of stochastic differential equations, DVNC Akad. Nauk, Vladivostok, 1989  mathscinet
[4]Dubko V. A. and Chalykh E. V., “Construction of an analytic solution of one class of Langevin-type equations with orthogonal random actions”, Ukr. Mat. Zh., 50:4 (1998), 588–589  crossref  mathscinet  zmath  scopus
[5]Shiryaev A. N., Essentials of stochastic finance: Facts, models, theory, Advanced Series on Statistical Science & Applied Probability, 3, World Scientific Publishing Co., Inc., River Edge, NJ, 1999  crossref  mathscinet
[6]Balescu R., Equilibrium and nonequilibrium statistical mechanics, John Wiley & Sons, New York, 1975  mathscinet  mathscinet
[7]Klimontovich Yu. L., “Nonlinear Brownian motion”, Usp. fiz. nauk, 164:8 (1994), 811–844  mathnet  crossref
[8]Itô K. and McKean H. P. Jr., Diffusion processes and their sample paths, Springer-Verl., New York and Berlin, 1965  mathscinet  zmath
[9]Dubko V. A. and Karachanskaya E. V., Specific sections of the theory of stochastic differential equations, Pacific Nat. Univ., Khabarovsk, 2013  mathscinet
[10]McKean H. P., Jr., Stochastic Integrals, AMS Chelsea Publishing Series, 353, Academic Press, New York and London, 1969  mathscinet  mathscinet
[11]Levakov A. A., Stochastic differential equations, Belarusian Gos. Univ., Minsk, 2009
[12]Pugachev V. S. and Sinitsyn I. N., Theory of stochastic systems, Logos, Moscow, 2004  mathscinet
[13]Miller B. M. and Pankov A. S., Theory of random processes in examples and problems, Fizmatlit, Moscow, 2002
[14]Karachanskaya E. V., Stochastic processes with invariants, Pacific Nat. Univ., Pacific Nat. Univ., 2014
[15]Risken H., The Fokker-Planck equation: methods of solution and applications, Springer-Verl., Berlin, 1984  mathscinet  zmath
[16]Demidovich B. P., Lectures on mathematical stability theory, Nauka, Moscow, 1967  mathscinet
[17]Chalykh E. V., “On one generalization of the Langevin equation with determinate modulus of velocity”, Ukr. Mat. Zh., 50:7 (1998), 1004–1006  mathscinet  zmath
How to Cite
Karachanskaya, E. and Petrova, A. (2016) “Non-random functions and solutions of Langevin-type stochastic differential equations”, Mathematical notes of NEFU, 23(3), pp. 55-69. Available at: http://mzsvfu.ru/index.php/mz/article/view/non-random-functions-and-solutions-of%20langevin-type-stochastic-differential-equations (Accessed: 22September2020).
Section
Mathematics