Linear inverse problems of spatial type for quasiparabolic equations

  • Akimova Ekaterina V., Novosibirsk State University, Pirogova Street, 1, Novosibirsk 630090, Russia
  • Kozhanov Aleksandr I., Sobolev Institute of Mathematics, 4 Koptyug Avenue, Novosibirsk 630090, Russia
Keywords: linear inverse problem, quasiparabolic equations, boundary overdetermination condition, regular solutions, existence, uniqueness


We study solvability of the inverse problems for finding both the solution $u(x, t)$ and the coefficient $q(x)$ in the equation

$$(−1)^{m+1}\frac{\partial^{2m+1}u}{\partial t^{2m+1}}+\Delta u + \mu u=f(x,t)+q(x)h(x,t),$$

where $x=(x_1,\dots , x^n)\in\Omega,$ $\Omega$ is a bounded domain in $R^n,$ $t\in(0, T),$  $0 < T <+\infty,$ $f(x, t)$ and $h(x, t)$ are given functions, $\mu$ is a given real, $m$ is a given natural, and $\Delta$ is necessary due to presence of the additional unknown function $q(x)$), the boundary overdetermination condition is used in the article (with $t = 0$ or $t = T$).
For the problems under study, the existence and uniqueness theorems for regular solutions are proved (all derivatives are the Sobolev generalized derivatives).


Fridman A., Partial Differential Equations of Parabolic Type, Prentice Hall, (1964).

Bers L., John F., and Schechter M., Partial Differential Equations, Interscience Publ., New York, London, Sydney (1964).

Ladyzhenskaya O. A., Solonnikov V. A., and Uraltseva N. N., Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence, RI (1968).

Kostin A. B. and Prilepko A. I., “On certain inverse problems for parabolic equations with final and integral observation,” Russ. Acad. Sci., Sb. Math., 75, No. 2, 473–490 (1993).

Prilepko A. I., Orlovsky D. G., and Vasin I. A., Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker Inc., New York, Basel (2000).

Isakov V., Inverse Problems for Equations of Parabolic Type, Springer, Berlin (2006).

Kabanikhin S. I., Inverse and Ill-Posed Problems. Theory and Applications, Walter de Gruyter, Berlin, Boston (2012).

Dubinskii Yu. A., “Boundary problems for ellyptic-parabolic equations [in Russian],” Izv. AN Armyan. SSR. Mat., 4, No. 3, 192–214 (1969).

Dubinskii Yu. A., “On some differential-operator equations of arbitrary order,” Math. USSR, Sb., 19, No. 1, 1–21 (1973).

Pyatkov S. G., “Solvability of some classes third order equations of mixed-composite type [in Russian],” Preprint, Akad. Nauk SSSR, Sib. Otd., Inst. Mat., Novosibirsk (1980).

Egorov I. E. and Fedorov V. E., Nonclassical Higher Order Equations of Mathematical Physics, Vychisl. Tsentr SO RAN, Novosibirsk (1995).

Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht (1999).

Kozhanov A. I., “Questions of posing and solvability of linear inverse problems for elliptic equations,” J. Inverse Ill-Posed Probl., 5, No. 4, 337–352 (1997).

Dzhuraev T. D., Boundary Problems for Equations of Mixed and Mixed-Composite Type, Fan, Tashkent (1979).

Trenogin V. A., Functional Analysis, Nauka, Moscow (1980).

Besov O. V., Il’in V. P., and Nikolskii S. M., Integral Representations of Functions and Embedding Theorems, John Wiley and Sons, New York (1978).

Vladimirov V. S., Equations of Mathematical Physics, Marcel Dekker, New York (1971).

Kozhanov A. I. and Pinigina N. R., “Boundary value problems for some higher-order nonclassical differential equations,” Math. Notes, 101, No. 3–4, 467–474 (2017).
How to Cite
Akimova, E. and Kozhanov, A. (&nbsp;) “Linear inverse problems of spatial type for quasiparabolic equations”, Mathematical notes of NEFU, 25(3), pp. 3-17. doi: